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ABSTRACT 

Flexible rotating machine are significantly complex, even for highly simplified models, due to gyroscopic 
and other effects. This paper presents the coupled, linear partial differential equations of motion of a flexible 
rotating shaft subjected to ground motion. Classical and finite element methods are developed to solve these 
equations. The effects of various physical parameters on the response of the system; magnitude, duration, 
and frequency content of the ground motion; bearing stiffness and damping; flexibility of the shaft; angular 
velocity of the shaft; as well as forward and reverse rotation are investigated. Both vertical and horizontal 
ground motions, individually and in combination, will be considered. 

A NEWTONIAN APPROACH FOR DETERMINING THE EQUATIONS OF MOTION FOR A 
ROTATING FLEXIBLE SHAFT 

The differential equations for the rotor will be derived by the theory of classical dynamics'. The rotor 
model takes into account bending deformations, rotatory inertia as well as gyroscopic effects. The shaft is 
assumed rigid in the direction of the axis of the shaft and shear deformations are neglected. 

For a uniform symmetric shaft, let c, c and c be mutually perpendicular unit vectors fixed in inertia 
reference frame. Let eq, er  and e be a set of mutually perpendicular unit vectors fixed to a differential element 
B with symmetric and circular cross section rotating in the inertial reference frame N as shown in Figure 1. 
The shaft is modelled as a Euler-Bernoulli beam. Let G be the mass center of B, and P be a typical particle 
in B as shown in Figure 1. Then the acceleration of P and Gin the inertial reference frame N, NaP  and NaG, 
are related by the expression' 

MaP.NaG 4ya Bxr+Ncolt xr 6) Bxr) (1) 

where Ncor' and NaB  are the angular velocity and angular acceleration of differential element B in the inertial 
reference frame N and can be expressed as' 

ia3=0qeqrer '• ix3=6qeq+a rer (2) 

The equivalent inertia torque M* is defined as 

.M* = -f rx-waPdm (3) B 

where dm is a differential mass located at P. By substituting equation (1) into equation (3), the inertia torque 
M* becomes 

= f rxNa Gdm-f rxra Bx6dm- f rxr to Bxrco RxrAdm (4) 
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If G is the mass center of B, the sum of the first mass moments relative to G is zero. After some 
manipulations', the inertia torque M* in equation (4) can be rewritten as 

M' = - fB  rx(24a Bxr)dm-mcosx rB  rx(N6)xr)dm (5) 

= a  B _N co Bx (1itlG.N (0 B) 

where PIG  is the inertia matrix of the differential element B relative to the mass center G for mutually 
perpendicular unit vectors eq, er  and e„ i.e. 

Luc = Diag[I, I, J] (6) 

where the mass moment and polar mass moment of an element of the shaft per unit length can be expressed 
as I=p Ale and J=2pAk2 and p, A and 1c2(=I/A) are the mass density, cross sectional area of the shaft and the 
radius of gyration of the cross section, respectively.  

The components of NO parallel and perpendicular to NO' are expressed as 

o2 13  = (e s  -N623)e  s  +(e sxijo2 3)xe (7) 

Combining equation (7) with equation (6), we have 

(.0 B jeirwee 
s +

Fe sx2.7 (0 3)xe
(8) 

Taking the cross product between 'co' and both sides of equation (8), substituting the result into equation 
(5) and using equation (2), the inertia torque M* becomes 

= -(16.-J12so)e,r-(Ior+Ja,a,,)e, (9) 

The moment acting on the element is (see Figure 2) 

M=[M.(z+dz)-M.(z)-Vy(z)dz]eq+[My(z+dz)-My(z)-Tc(z)dz]er (10) 

The shaft is assumed to be a Bernoulli-Euler beam i.e. Mx=-EIv" and My=EIu". Considering d'Alembert's 
principle M*+MA) and combining 
in 

a2 _a2u 
 - 

equations (9) and (10) with 

82 2 - + „ &)] -[mk (-
au 

the kinematic relations, Or  =u', 

a2u  
m— = a 

results 

(11)  
2

, 
2  az 2 aZ aZ at 2 at at 2  

a2 82v a2 a2V a2v 
[EI] - -Lmick-+LiA 

= 
az 2 ar t at 

= (12)  
az 2 az2  ar t 

where m is mass per unit length. For a uniform shaft without disk, the coupled equations for the bending of 
a rotating shaft for in two directions are given by equations (11) and (12). These two equations of motion 
can be combining by introducing the symbol q=v+iu, resulting in one complex equation, i.e. 
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a2 a2q 82 2 a2q aq a24, 
—[mk (-- 2 D +m—= 0 

az 2 az 2  aZ 2 ate at at 2  

For a uniform rotor-pin model shown in Figure 3, the eigenfunctions2  of the above complex equation are 

q(x,O=Csin(—nit
L

x )e (n=1,2,3....) (14) 

where the unknown constant C depends upon the initial conditions. The length of the shaft is L and the 
eigenvalue of the shaft is A. For other boundary conditions, the eigenfunctions are provided by Genta2. 
Substitution of equation (14) into equation (13), gives the algebraic equation for the natural frequencies, i.e. 

2.31 2 
(1+ k  2n 2n 2 )1  2

p ri 
20  _ EI n 4n 4  -0 (15) 

L 2 L 2 m L 4  

Solving equation (15) for a natural frequency A, results in 

1,2„,2z2 El 
ra±0 2+0+-  ) 

-( k 
2n  211 2

L 2
Mk  2  

L 2
)  

 k  2n 27;2 
1 +(  

L 2  

(16) 

Equation (16) yields two values for A, one positive and the other negative. In equation (15), forward rotation 
is given by a positive value for C2 while reverse rotation is given by a negative value for Q. 

In particular, the forward critical speeds Q„ and reverse critical speeds C2c,. can be obtained by 
substituting A.=0 and A=-C2 into equation (15), resulting in 

(13) 

El 

n 22 2
\  

L 2 

 \

I  1 k2n2u2  

EI 

_
n 2,1 2 m  

L 2 3k  2n  27E 2 
1+  

L 2  L 2  

(17) 

For a particular value of n, the natural frequency A can be determined as a function of Q, resulting in a family 
of curves (see Figure 6). In this figure, the critical speeds of forward and reverse rotation are easily 
determined by the intersection of the individual curves with the lines A=52 and A=-C2. 

FINITE ELEMENT EQUATIONS FOR THE ROTATING FLEXIBLE SHAFT 

Finite Element Equations for the Shaft 
Finite element formulations have been provided several authors'''. The formulations presented here 

follow Suarez et. al closely. The element equations' considering translational base motions only and 
neglecting shear deformations and rotatory inertia are 

Arr + + = f(t) (18) 
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where the element mass, damping, stiffness and applied force matrices are defined as 

ilf=f pANIArds+f pIxYrNids (19)  

C'=a1.1pYr(eie2r-e2ei r)11eds (20)  
0 

= fEly"TNilds (21)  

r(t)=- f[pANrds]a, (22)  
0 

where e1(=[1, On and e2(=[0, 1]r) Note that gyroscopic effects are included as evidenced by the term Ce 
in equation (20). The mass density of the shaft and the vector of translational base accelerations are p and 
ab, respectively. The shaft transverse and polar mass moment of inertia are Ix  and 4, respectively. 

In order to satisfy continuity requirements, the interpolation functions must be continuous in 
displacement and slope across the element boundaries, i.e. C' continuity. The cubic beam polynomials satisfy 
C' continuity and are an appropriate choice for the interpolation function N. For each element, there are two 
translational degrees of freedom (u.:, uy`) and two rotational degrees of freedom (O:, eye) in the x- and y-
directions; therefore, qe in equation (18) is an 8x 1 vector of nodal displacements and rotations, given by 

qe=[u.1% e,de,  ey.1% Ux2e' Uy2e, ex,e' ey2elr (23) 

where the second subscripts 1 and 2 indicate the nodal displacements of the left and right ends of the element, 
respectively. 

The effects of the shear deformations cannot be neglected when the shaft is short and stocky. The 
consistent interpolation element (CIE) and reduced integration element (RIE) have been developed by Reddy' 
when shear deformations are considered. An apparently simple and accurate formulation to modify the 
stiffness matrix of equation (21) to include shear deformation effects using the method of superposition has 
been suggested by Su4. 

Journal-Fluid-Bearing System 
The bearing system (see Figure 4) is often a major source of stiffness as well as damping for the rotating 

machine and as such significantly affects the dynamic properties of the system. The bearing affects the critical 
speeds and the stability of the rotor. Fluid-film bearings are generally modelled by two linear orthogonal 
elastic and damping forces' which depend on the displacements and velocities at the bearing location, 
respectively. The fluid-film reaction force is a function of the speed of rotation, journal length, journal 
diameter, radial clearance, lubricant viscosity and the weight of the bearing'. 

PARAMETRIC STUDIES 

Natural Frequency and Stability Analysis 
The complex eigenvalues problem associated with the rotor-bearing system is 
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on.2+cl+x).x=0 (24) 

where ? is an eigenvalue of the system and x is the corresponding eigenvector. This complex eigenvalue 
problem can be solved by introducing an additional unknown eigenvector y, resulting in the 2Nz2N 
eigensystem (N is the number of degrees of freedom), 

0 I x 

-Arl-Ci 

where M, C and K are the mass, damping and stiffness matrices of the rotating machine system, respectively. 
The natural frequencies (G.) ) and modal damping ratios 03) of the system are 

(1)  
= ; - (26) 

where the magnitude and the real part of a complex number are denoted I-I and a(•), respectively. If the 
motion of a rotor is stable, the real parts of all the eigenvalues (modal damping ratios) must be negative. To 
obtain the speed at which a rotor would become unstable, one can plot the largest real part of the system 
eigenvalues against the speed of rotation shown in Figure 7. For the rotor-disk-bearing model, one can 
observe a change from a negative to a positive value at the critical rotation speeds of about 2310 and 104 
rpm. 

Parametric Studies 
In general, the equations of motion of a rotor-bearing system subjected to seismic excitation are quite 

complex. It is difficult to integrate these equations analytically; therefore, a step-by-step approach such as 
the Newmark-13 integration scheme is used. 

As an example for seismic analysis, consider the rotor-disk-bearing model is shown in Figure 4 whose 
physical properties are provided in Table 1. The rotor is modelled using 14 finite elements with a total of 60 
degrees of freedom. The bearings have stiffness and damping coefficients as given by Earles et al' for elliptical 
bearings with L/D=1. The maximum seismic response of a rotating machine subjected to different 
components of the El Centro (1940) earthquake and various speeds of rotation are given in Tables 2 and 3 
while the response time histories are shown in Figure 8. Note that the rigid body motion induced by the 
bearing system must be considered when obtaining the actual deformation response of the shaft. 

Consider the rotor-disk-pin model shown in Figure 5. The physical properties of the rotor are the same 
as the rotor-disk-bearing model, expect that flexible bearing supports are replaced with rigid "pin" supports. 
Damping provided by the bearings that was present in the previous system is absent here, since there is no 
material damping of the shaft and no damping in the supports. As expected, the response time histories of 
the disk will not decay with time (Figure 9). The maximum deformation of rotor-disk-pin model subjected 
to various components of El Centro (1940) earthquake is given in Table 3 for both forward and reverse 
rotations. Referring to equation (20), the term Q is replaced with -0 for the rotating shaft operating in 
reverse direction. Only slight differences are observed in the response. 

The effects of the shaft flexibility on the natural frequency and critical speed for the rotor-disk-pin model 
(Figure 3) are given in Figure 10 and Tables 4 and 5. From Figure 10 and comparing Tables 4 and 5, one can 
readily observe that natural frequencies for forward and reverse rotations have significant differences when 
the shaft becomes flexible. Conversely, the natural frequencies for the forward and reverse rotations have no 
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significant differences when the shaft becomes more stiff (see Figure 6).  

CONCLUSIONS 

The equations of motion of a flexible rotating machine with uniform properties along the shaft, operating 
with constant speed of rotation, mounted on rigid supports at the ends are developed using classical 
dynamics. These governing equations of motion can be reduced to a single algebra equation to determine the 
natural frequencies and critical speeds of rotation. 

Finite element methods are used to model non-uniform flexible rotors with rigid disks and complex 
journal fluid bearing support systems. Instabilities of a typical flexible rotating machine are discussed. The 
response of the rotating machine to several different components of the El Centro (1940) earthquake are 
presented. The effect of stiffness and damping of the support bearings on the seismic response of the rotating 
machine is explored. It is noted that the critical speeds for a flexible machine supported on rigid "pin" 
supports exhibit negligible difference for forward and reverse rotation, but differ significantly when the shaft 
becomes flexible. 
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Table I Properties of the rotating machine 

Shaft : 
Modulus of elasticity, E = 2.078.10' NMI' 
Mass density, p = 7806 kg/m' 
Poisson's ratio, v = 0.3 
Revolutions per minute, i2 = 880 rpm 

Rigid disk : 
Disk mass, m, = 5670 kg 
Transverse moment of inertia, Ix  = 3550 kg.te 
Polar moment of inertia. In = 7100 kgm' 

Bearing system : 
Viscosity, g = 0.14839 Mint' 
Diameter ofjoumal, D = 0.229 m 
Length of journal, L = 0.229 m 
Clearance, C = 
Weight on bearing, W =67120 N 
L/D ratio =1.0 
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v(z,t) 

u(z,t) 

Ls 

Table 2 Maximum absolute acceleration of the rigid disk for rotor-disk- Table 4 The first three natural frequencies (Hz) for a uniform "stiff' shaft 
bearing model. (EI= 8.17s1ff with rigid "vin" supports. 

Rotation Speed 
(rpm) 

El Centro 
(S00E+Vert) 

(g) 

El Centro 
(SOOE) 

(8) 

El Centro 
(Vert) 

(8) 

150 0.5202 0.4447 0.5319 

880 0.4785 0.4602 0.4138 

1500 0.4635 0.4326 0.4230 

2250 0.8051 0.5560 0.4774 

Table 3 Maximum deformation (mm) of the shaft at mid-span for rotor-
disk-pin model. 

Rotation Speed 
(rpm) 

El Centro 
(S00E+Vert) 

(g) 

El Centro 
(SOOE) 

(8) 

El Centro 
(Vert) 

CO 

150 0.7655 0.5283 0.5244 

880 0.7774 0.5221 0.5151 

1500 0.8084 0.5189 0.5054 

2250 0.8414 0.5172 0.4872 

-150 0.7591 0.5283 0.5224 

-880 0.7375 0.5222 0.5151 

-1500 0.7151 0.5190 0.5054 

-2250 0.6781 0.5173 0.4872 

Rotation speed 
(rPM) 

43, (sly 43, 

150 198.102 786.424 , 1747.68 

880 198.492 787.959 1751.05 

1500 198.823 789.265 1753.91 

2250 199.225 790.848 175739 

-150 197.942 785.794 1746.29 

-880 197.553 784.263 1742.93 

-1500 197.224 782.965 1740.08 

-2250 196.826 781.398 1736.64 

Table 5 The first three natural frequencies (Hz) for a uniform " flexible" 
shaft (E1=8.17a10') with rigid "pin" supports. 

Rotation speed 
(rpm) 

IA), 4), co, 

150 0.71124 2.82077 6.25897 

880 1.25144 4.94553 10.9100 

1500 1.81508 7.16272 15.7643 

2250 2.55221 10.0640 22.1220 

-150 0.55133 2.19077 4.87614 

-880 0.31334 1.24955 2.79739 

-1500 0.21604 0.86276 1.93599 

-2250 0.15364 0.61404 1.37960 

z 
Fig. I A differential element B moving in the inertia frame N. Fig. 2 Free body diagram of the differential element of the shaft. 
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Fig. 9 Time histories of disk displacement in the X-direction 
for rotor-disk-pin model with operation speed 880 
(rpm) subjected to El Centro (1940) earthquake. 
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Fig. 4 Rotor-disk-bearing model. 

Fig. 5 Rotor-disk-pin model. Fig. 6 The natural frequency 2. of the stiff shaft with 
respect to speed of rotation Ofor a particular 
value of n. 
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Fig. 7 Variation in the largest real part of the system Fig. 8 Time histories of disk displacement in the X-direction 
eigenvalues of the rotor with respect to speed for rotor-disk-bearing model with operation speed 880 
of rotation. (rpm) subjected to El Cemtro (1940) earthquake. 
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Fig. 10 The natural frequency ) of the flexible shaft 
with respect to speed of rotation Qfor a 
particular value of n. 
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